Land Use Emissions

Emissions from land use & land use change (LULUC) contribute to total annual emissions in the FeliX model. LULUC emissions include agricultural inputs--especially fertilizers--as well as deforestation.

Agricultural emissions, shown below in brown, are predicted to rise steadily through 2100 due to the expansion of agricultural land as well as increased use of fertilizers. This parameter is calibrated in the model to historical data on agricultural emissions from the FAO.

Carbon emissions [PgC/yr] from land use/land use change (LULUC) are represented by the shaded grey region. The specific contribution to LULUC emissions from agricultural land use (especially fertilizers) is calibrated to historical data from the FAO and shown in brown. The dark gray and brown shaded regions propagate the effects of high and low population estimates.

Carbon emissions [PgC/yr] from land use/land use change (LULUC) are represented by the shaded grey region. The specific contribution to LULUC emissions from agricultural land use (especially fertilizers) is calibrated to historical data from the FAO and shown in brown. The dark gray and brown shaded regions propagate the effects of high and low population estimates.

The second component of LULUC emissions is deforestation, which is determined endogenously in the model (is not calibrated to historical data). Deforestation is estimated to have contributed roughly 1 PgC in annual emissions for most of the period 1950-2000. For the next few decades, modest afforestation is predicted to partially offset agricultural emissions through the increase of forest carbon stocks.

Near the end of the century, however, competition for land is predicted to accelerate deforestation, resulting in a nearly-twofold increase in total LULUC emissions. This result is highly dependent on population estimates, as shown by the wide dark-grey shaded region.

Historical data from the CDIAC on total land use emissions is used as a check on model results.